Some Common Fixed Point Theorems in 2-Metric Spaces

Krishnadhan Sarkar ${ }^{1 *}$ and Kalishankar Tiwary ${ }^{2}$
${ }^{1}$ Raniganj Girls' College, Raniganj, West Bengal, India
${ }^{2}$ Raiganj University, Raiganj, West Bengal, India
*Corresponding author: email: sarkarkrishnadhan@gmail.com

Abstract

In this paper, we obtain some results of fixed point theorems in 2-metric spaces which are inspired by the works of V. Gupta et al. ${ }^{[3]}$. The results are proved using some binary relation and conditions on the mappings. Existence and uniqueness of fixed points of self maps satisfying certain conditions are investigated in a complete 2-metric space.

Keywords: Fixed point, 2-metric space, weak compatibility etc.

Let X be a non-empty set and let $\mathrm{d}: \mathrm{X} \times \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ be such that,

* To each pair of point x, y in X with $\mathrm{x} \neq \mathrm{y}$ there exists a point z in X such that $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \neq 0$.
* $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ when at least two of the three points are equal.
* For any $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in $\mathrm{X}, \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{d}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{z}, \mathrm{x})$.
* For any $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ in $\mathrm{X}, \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{w})+\mathrm{d}(\mathrm{x}, \mathrm{w}, \mathrm{z})+\mathrm{d}(\mathrm{w}, \mathrm{y}, \mathrm{z})$,
* Then d is called a 2-metric ${ }^{[2]}$ and (X, d) is called a 2-metric space ${ }^{[2]}$.

In this note X will denote a complete 2 -metric space unless or otherwise stated instead of (X,d).

* A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence ${ }^{[7]}$ when $d\left(x_{n}, x_{m}, a\right) \rightarrow 0$ as $n, m \rightarrow \infty$
* A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in X is said to be converge ${ }^{[7]}$ to an element x in X when $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{a}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

It is interesting to note that every convergent sequence in a 2-metric space need not be a Cauchy sequence ${ }^{[7]}$. A 2-metric d is said to be continuous when it is continuous in two of its arguments ${ }^{[7]}$. The notion of weak commutivity compatibility, weakly compatibility analogous introduced in 2-metric spaces ${ }^{\{[1],[9]\}}$ as they are available in metric space ${ }^{\{[4],[5],[6]\}}$.

The notion of binary relation has been used $\mathrm{in}^{[3]}$ and some common fixed point theorems have been obtained in 2-metric spaces.

In this paper we have made attempt to obtain some common fixed point theorems for four mappings in 2-metric spaces. Before going to state and prove the main theorem we collect the following definitions ${ }^{[3]}$:

* Definition 1: Let A and B be mappings from a metric space (X, d) into itself. A and B are said to be weakly compatible if they commute at their coincidence point i.e., $\mathrm{Ax}=\mathrm{Bx}$ for some x in X implies $\mathrm{ABx}=\mathrm{BAx}$.
* Definition 2: Let $\diamond: \mathrm{R}^{+} \times \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$be a binary operation satisfying the following conditions:

1. \diamond is associative and commutative
2. \diamond is continuous.

* Definition 3: the binary operation \diamond is said to satisfy α-property if there exists a positive real number α such that $a \vee b \leq \alpha\{a, b\}$ for all $a, b \in R^{+}$.

Main result

Theorem: Let (X,d) be a complete 2 -metric space such that \rangle satisfy α-property with $\alpha \geq 0$. Let A, B, S, T be self-mappings of X into itself satisfy following conditions:
a. $A(X) T(X), B(X) S(X)$ and $S(X), T(X)$ are closed sub sets of X.
b. The pair (A, S) and (B, T) are weakly compatible.
c. $\left.d A x, B y, u) \leq K_{1} d(S x, T y, u) \diamond d(A x, S x, u)\right]+K_{2}[d(S x, T y, u) \diamond d(B y, T y, u)]+K_{3}[d(S x, T y, u) \diamond d(A x, B y, u)]$ $+\mathrm{K}_{4}\left[\mathrm{~d}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{Ty}, \mathrm{u}]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{u}) \diamond\{\mathrm{d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{Ty}, \mathrm{u})\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{u}) \diamond\right.$ $\{d(A x, S x, u)+d(B y, T y, u)\}]$
for all x , y in X , where $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6} \geq 0$ and $\sum_{i=1}^{6} K_{i}<1$. Then $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$ have a unique common fixed point in X.

Proof: Let x_{0} be an arbitrary point in X. We can find deductively a sequence $\left\{y_{n}\right\}$ in X such that $y_{2 n}=$ $\mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Tx}_{2 \mathrm{n}+1}$ and $\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Bx}_{2 \mathrm{n}+1}=\mathrm{Sx}_{2 \mathrm{n}+2}$, for $\mathrm{n}=0,1,2,3, \ldots$

We claim that $\left\{y_{n}\right\}$ is a Cauchy sequence using (c) we get,

$$
\begin{aligned}
& d\left(y_{2 n}, y_{2 n+1}, u\right)=d\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{u}\right) \leq \mathrm{K}_{1}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, T \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{u}\right) \diamond \mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}, \mathrm{u}\right)+\mathrm{K}_{2}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, T \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{u}\right) \diamond\right.\right. \\
& \left.\mathrm{d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 n+1}, \mathrm{u}\right)\right]+\mathrm{K}_{3}\left[\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{u}\right)\right) \diamond \mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}{ }_{2 n+1}, \mathrm{u}\right)\right]+\mathrm{K}_{4}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{u}\right) \diamond \mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Tx}_{2 n+1}, \mathrm{u}\right)\right] \\
& \left.+\mathrm{K}_{5}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n+1}}, \mathrm{u}\right)\right) \diamond\left\{\mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{u}\right)+\mathrm{d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{u}\right)\right\}\right]+\mathrm{K}_{6}\left[\mathrm { d } (\mathrm { Sx } _ { 2 \mathrm { n } } , \mathrm { Tx } _ { 2 \mathrm { n } + 1 } , \mathrm { u }) \diamond \left\{\mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}}, S \mathrm{~S}_{2 \mathrm{n}}, \mathrm{u}\right)\right.\right. \\
& \left.\left.+\mathrm{d}\left(\mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{u}\right)\right\}\right] \\
& =K_{1}\left[d\left(y_{2 n-1}, y_{2 n}, u\right) \diamond d\left(y_{2 n}, y_{2 n-1}, u\right)\right]+K_{2}\left[d\left(y_{2 n-1}, y_{2 n}, u\right) \diamond d\left(y_{2 n+1}, y_{2 n}, u\right)\right]+K_{3}\left[d\left(y_{2 n-1}, y_{2 n}, u\right) \diamond d\left(y_{2 n}, y_{2 n+1}, u\right)\right] \\
& +\mathrm{K}_{4}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{u}\right) \diamond \mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{u}\right]+\mathrm{K}_{5}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{u}\right) \diamond\left\{\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{u}+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{u}\right)\right\}\right]+\mathrm{K}_{6}\left[\mathrm{~d}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{u}\right)\right.\right.\right. \\
& \left.\diamond\left\{\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{u}\right)+\mathrm{d}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{u}\right)\right\}\right] .
\end{aligned}
$$

Let $d_{n}=d\left(y_{n-1}, y_{n}, u\right)$. Then from above inequality we get,

$$
\begin{aligned}
& \left.\mathrm{d}_{2 n+1} \leq \mathrm{K}_{1}\left[\mathrm{~d}_{2 \mathrm{n}} \diamond \mathrm{~d}_{2 \mathrm{n}}\right]+\mathrm{K}_{2}\left[\mathrm{~d}_{2 \mathrm{n}} \diamond \mathrm{~d}_{2 \mathrm{n}+1}\right]+\mathrm{K}_{3}\left[\mathrm{~d}_{2 \mathrm{n}} \diamond \mathrm{~d}_{2 \mathrm{n}+1}\right]+\mathrm{K}_{4}\left[\mathrm{~d}_{2 \mathrm{n}}\right\rangle 0\right]+\mathrm{K}_{5}\left[\mathrm{~d}_{2 \mathrm{n}} \diamond 1 / 2\left\{\mathrm{~d}_{2 \mathrm{n}+1}+\mathrm{d}_{2 \mathrm{n}+1}\right\}\right]+\mathrm{K}_{6}\left[\mathrm{~d}_{2 \mathrm{n}} \diamond 1 / 2\left\{\mathrm{~d}_{2 \mathrm{n}}\right.\right.
\end{aligned}
$$

i.e., $\mathrm{d}_{2 \mathrm{n}+1} \leq \alpha \mathrm{K}_{1} \mathrm{~d}_{2 \mathrm{n}}+\alpha \mathrm{K}_{2} \max \left\{\mathrm{~d}_{2 \mathrm{n}}, \mathrm{d}_{2 \mathrm{n}+1}\right\}+\alpha \mathrm{K}_{3} \max \left\{\mathrm{~d}_{2 \mathrm{n}}, \mathrm{d}_{2 \mathrm{n}+1}\right\}+\alpha \mathrm{K}_{4} \mathrm{~d}_{2 \mathrm{n}}+\alpha \mathrm{K}_{5} \max \left\{\mathrm{~d}_{2 \mathrm{n}}, \mathrm{d}_{2 \mathrm{n}+1}\right\}+\alpha \mathrm{K}_{6} \max \left\{\mathrm{~d}_{2 \mathrm{n}}\right.$, $\left.\left(\mathrm{d}_{2 \mathrm{n}}+\mathrm{d}_{2 \mathrm{n}+1}\right)\right\}$

Let, if possible that, $\mathrm{d}_{2 \mathrm{n}+1}>\mathrm{d}_{2 \mathrm{n}}$.
Then from (1) we get,

$$
\mathrm{d}_{2 n+1} \leq \alpha K_{1} d_{2 n}+\alpha K_{2} d_{2 n+1}+\alpha K_{3} d_{2 n+1}+\alpha K_{4} d_{2 n}+\alpha K_{5} d_{2 n+1}+\alpha K_{6} d_{2 n+1}
$$

Or, $\mathrm{d}_{2 \mathrm{n}+1}<\alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right) \mathrm{d}_{2 \mathrm{n}+1}<\mathrm{d}_{2 \mathrm{n}+1},\left[\right.$ as $\left.\alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right)<1\right]$,
Which is a contradiction.
So, $d_{2 n+1}<d_{2 n}$ i.e., $d_{2 n}<d_{2 n-1}$;
Therefore, $\mathrm{d}_{2 \mathrm{n}}<\mathrm{d}_{\mathrm{n}-1}$, for $\mathrm{n}=1,2,3 \ldots$
So, $d_{n}<\alpha\left(K_{1}+K_{2}+K_{3}+K_{4}+K_{5}+K_{6}\right) d_{n-1}$ i.e., $d_{n}<K_{n-1}$ where,
$\mathrm{K}=\alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right)<1$
By iteration n times we get,
$\mathrm{d}_{\mathrm{n}}<\mathrm{K}_{\mathrm{n}-1}<\mathrm{K}^{2} \mathrm{~d}_{\mathrm{n}-2}<\ldots<\mathrm{K}^{\mathrm{n}} \mathrm{d}_{0}$
Taking lim as $\mathrm{n} \rightarrow \infty$ we get, $\lim _{\mathrm{n} \rightarrow \infty} d_{n}=0$
So, $\lim _{\mathrm{n} \rightarrow \infty} d\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{u}\right)=0$
Let, $\mathrm{m}>\mathrm{n}$ where $\mathrm{m}=2 \mathrm{n}+1$.
We prove $\left\{y_{n}\right\}$ is a Cauchy sequence by the method of contradiction.
Let, if possible suppose that n is the least integer for which $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{u}\right) \geq \varepsilon$ but, $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}}, \mathrm{u}\right)<\varepsilon$
Now, $\varepsilon<d\left(y_{n}, y_{m}, u\right) \leq d\left(y_{n}, y_{m}, y_{n-1}\right)+d\left(y_{n}, y_{n-1}, u\right)+d\left(y_{n-1}, y_{m}, u\right)$
Now, $d\left(y_{n}, y_{m}, y_{n-1}\right)=d\left(\mathrm{Ax}_{n}, B x_{m}, \mathrm{y}_{\mathrm{n}-1}\right) \leq \mathrm{K}_{1}\left[\mathrm{~d}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right) \diamond \mathrm{d}\left(\mathrm{Ax}_{\mathrm{n}}, \mathrm{Sx}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)\right]+\mathrm{K}_{2}\left[\mathrm{~d}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)\right.$ $\left.\left.\diamond d\left(B x_{m}, T x_{m}, y_{n-1}\right)\right]+K_{3}\left[d\left(S x_{n}, T x_{m}, y_{n-1}\right)\right\rangle d\left(\mathrm{Ax}_{\mathrm{n}}, B x_{m}, y_{n-1}\right)\right]+K_{4}\left[d\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)\right\rangle \mathrm{d}\left(\mathrm{Ax}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right]+$ $\left.\mathrm{K}_{5}\left[\mathrm{~d}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)\right\rangle \underline{1} 2\left\{\mathrm{~d}\left(\mathrm{Ax}_{\mathrm{n}}, \mathrm{Bx} \mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{Bx}_{\mathrm{m}}, \mathrm{Tx} \mathrm{x}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)\right\}\right]+\mathrm{K}_{6}\left[\mathrm{~d}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)+1 / 2\left\{\mathrm{~d}\left(\mathrm{Ax}_{\mathrm{n}}, S \mathrm{Sx}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right)\right.\right.$ $\left.\left.+\mathrm{d}\left(\mathrm{Bx}_{\mathrm{m}}, \mathrm{Tx}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)\right\}\right]$

$$
\begin{aligned}
&=\left.\left.\left.\mathrm{K}_{1}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right\rangle \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right]+\mathrm{K}_{2}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right\rangle \mathrm{d}\left(\mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right]+\mathrm{K}_{3}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right\rangle \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)\right] \\
&+\mathrm{K}_{4}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right\rangle \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right]+\mathrm{K}_{5}\left[\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right) \diamond 1 / 2\left\{\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right\}\right]+\mathrm{K}_{6}\left[\mathrm { d } \left(\mathrm{y}_{\mathrm{n}-}\right.\right. \\
&\left.\left.{ }_{1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)+1 / 2\left\{\mathrm{~d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right\}\right]
\end{aligned}
$$

Or, $d\left(y_{n}, y_{m}, y_{n-1}\right) \leq K_{2} d\left(y_{m}, y_{m-1}, y_{n-1}\right)+K_{3} d\left(y_{n}, y_{m}, y_{n-1}\right)+K_{4} d\left(y_{n}, y_{m-1}, y_{n-1}\right)+K_{5} 1 / 2\left\{d\left(y_{n}, y_{m}, y_{n-1}\right)+d\left(y_{m}, y_{m-1}\right.\right.$, $\left.\left.\left.\mathrm{y}_{\mathrm{n}-1}\right)\right\}\right]+\mathrm{K}_{6}^{1 / 2 \mathrm{~d}}\left(\mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{n}-1}\right)$

Using (2) and taking $\lim \mathrm{n} \rightarrow \infty$ we get, $\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{n}-1}\right)=0$
Using (2) and (4), we get from (3)
$\varepsilon<0+0+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{m}}, \mathrm{u}\right)<\varepsilon$ i.e., $\varepsilon<\varepsilon$
Which is a contradiction.
Hence, $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence.
Since, X is a complete 2-metric space.
Therefore, $\lim \mathrm{n} \rightarrow \infty \mathrm{y}_{\mathrm{n}}=\mathrm{y}$ in X .
Hence, $\lim _{\mathrm{n} \rightarrow \infty} y_{n}=\lim _{\mathrm{n} \rightarrow \infty} A x_{2 \mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} B x_{2 \mathrm{n}+1}$
$=\lim _{\mathrm{n} \rightarrow \infty} S x_{2 \mathrm{n}+2}=\lim _{\mathrm{n} \rightarrow \infty} T x_{2 \mathrm{n}+1}=y$

Now, since $T(X)$ is a closed subset of X, there exists a v in X such that, $T v=y$
If $\mathrm{Bv} \neq \mathrm{y}$ then by using (c) we get,
$d\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bv}, \mathrm{u}\right) \leq \mathrm{K}_{1}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tv}, \mathrm{u}\right) \diamond \mathrm{d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{S} \mathrm{x}_{2 \mathrm{n}}, \mathrm{u}\right)\right]+\mathrm{K}_{2}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tv}, \mathrm{u}\right) \forall \mathrm{d}(\mathrm{Bv}, \mathrm{Tv}, \mathrm{u})\right]+$ $K_{3}\left[d\left(S x_{2 n}, T v, u\right) \diamond d\left(A x_{2 n}, B v, u\right)\right]+K_{4}\left[d\left(S x_{2 n}, T v, u\right) \diamond d\left(A x_{2 n}, T v, u\right]+K_{5}\left[d\left(S x_{2 n}, T v, u\right) \diamond 1 / 2\left\{d\left(A x_{2 n}, B v, u\right)+\right.\right.\right.$ $\mathrm{d}(\mathrm{Bv}, \mathrm{Tv}, \mathrm{u})\}]+\mathrm{K}_{6}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tv}, \mathrm{u}\right) \diamond 1 / 2\left\{\mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}, \mathrm{u}\right)+\mathrm{d}(\mathrm{Bv}, \mathrm{Tv}, \mathrm{u})\right\}\right]$

Taking \lim as $n \rightarrow \infty$ on both side we get,

$$
\begin{aligned}
& \mathrm{d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u}) \leq \mathrm{K}_{1}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{2}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Bv}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{3}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u})]+\mathrm{K}_{4}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u}] \\
& +\mathrm{K}_{5}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u})+\mathrm{d}(\mathrm{Bv}, \mathrm{y}, \mathrm{u})\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond 112\{\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u})+\mathrm{d}(\mathrm{Bv}, \mathrm{y}, \mathrm{u})\}]
\end{aligned}
$$

Or, $\left.\left.\mathrm{d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u}) \leq \alpha \mathrm{K}_{2} \mathrm{~d}(\mathrm{Bv}, \mathrm{y}, \mathrm{u})\right]+\alpha \mathrm{K}_{3} \mathrm{~d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u})\right]+\alpha \mathrm{K}_{5} \mathrm{~d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u})+\alpha \mathrm{K}_{6} \mathrm{~d}(\mathrm{Bv}, \mathrm{y}, \mathrm{u})$
Or, $\mathrm{d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u}) \leq \alpha\left(\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{5}+\mathrm{K}_{6}\right) \mathrm{d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u})<\mathrm{d}(\mathrm{y}, \mathrm{Bv}, \mathrm{u})\left[\right.$ as $\left.\alpha\left(\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{5}+\mathrm{K}_{6}\right)<1\right]$
Which is a contradiction.
$\mathrm{So}, \mathrm{Bv}=\mathrm{y}=\mathrm{Tv}$
Since, B, T are weakly compatible, we have $B T v=T B v$ i.e., $B y=T y$.
Now, if $y \neq B y$ then by using (c) we get,
$d\left(A x_{2 n}, B y, u\right) \leq K_{1}\left[d\left(S x_{2 n}, T y, u\right) \nabla d\left(A x_{2 n}, S x_{2 n}, u\right)\right]+K_{2}\left[d\left(S x_{2 n}, T y, u\right) \nabla d(B y, T y, u)\right]+$ $K_{3}\left[d\left(S x_{2 n}, T y, u\right) \diamond d\left(A x_{2 n}, B y, u\right)\right]+K_{4}\left[d\left(S x_{2 n}, T y, u\right) \diamond d\left(A x_{2 n}, T y, u\right]+K_{5}\left[d\left(S x_{2 n}, T y, u\right) \diamond 1 / 2\left\{d\left(A x_{2 n}, B y, u\right)+\right.\right.\right.$ $\mathrm{d}(\mathrm{By}, \mathrm{Ty}, \mathrm{u})\}]+\mathrm{K}_{6}\left[\mathrm{~d}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Ty}, \mathrm{u}\right) \diamond 1 / 2\left\{\mathrm{~d}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Sx}_{2 \mathrm{n}}, \mathrm{u}\right)+\mathrm{d}(\mathrm{By}, \mathrm{Ty}, \mathrm{u})\right\}\right]$

Taking \lim as $n \rightarrow \infty$ on both sides and using (7) and (5) we get,

$$
\begin{aligned}
& \mathrm{d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \leq \mathrm{K}_{1}[\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{2}[\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{By}, \mathrm{By}, \mathrm{u})]+\mathrm{K}_{3}[\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{By}, \mathrm{u})]+ \\
& \mathrm{K}_{4}\left[\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{By}, \mathrm{u}]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{By}, \mathrm{u})\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u})+\right. \\
& \mathrm{d}(\mathrm{By}, \mathrm{By}, \mathrm{u})\}]
\end{aligned}
$$

Or, $\mathrm{d}(\mathrm{y}, \mathrm{By}, \mathrm{u}) \leq \alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right) \mathrm{d}(\mathrm{y}, \mathrm{By}, \mathrm{u})<\mathrm{d}(\mathrm{y}, \mathrm{By}, \mathrm{u})$
$\left[\operatorname{as} \alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right)<1\right]$
Which is a contradiction. Hence, $\mathrm{y}=\mathrm{By}$
So, $\mathrm{y}=\mathrm{By}=\mathrm{Ty}$
Since, $\mathrm{B}(\mathrm{X}) \subseteq \mathrm{S}(\mathrm{X})$ there exists w in X, such that $S w=y \cdot[$ As $B y=y]$
Now, if $\mathrm{Aw} \neq \mathrm{y}$ then using (C),
$d(A w, B y, u) \leq K_{1}[d(S w, T y, u) \diamond d(A w, S w, u)]+K_{2}[d(S w, T y, u) \diamond d(B y, T y, u)]+K_{3}[d(S w, T y, u) \diamond d(A w, B y, u)]+$ $\mathrm{K}_{4}\left[\mathrm{~d}(\mathrm{Sw}, \mathrm{Ty}, \mathrm{u}) \vee \mathrm{d}(\mathrm{Aw}, \mathrm{Ty}, \mathrm{u}]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{Sw}, \mathrm{Ty}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Aw}, \mathrm{By}, \mathrm{u})+\mathrm{d}(\mathrm{By}, T y, u)\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{Sw}, \mathrm{Ty}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Aw}, S w, u)\right.$ $+\mathrm{d}($ By,Ty,u $)\}]$.

Using (8) and (9) we get,

$$
\begin{aligned}
& \mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u}) \leq \mathrm{K}_{1}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{2}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{3}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{4}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u}] \\
& \quad+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{y}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})\}] .
\end{aligned}
$$

Or, $\mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u}) \leq \alpha\left(\mathrm{K}_{1}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5} / 2+\mathrm{K}_{6} / 2\right) \mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})<\alpha\left(\mathrm{K}_{1}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right) \mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})<\mathrm{d}(\mathrm{Aw}, \mathrm{y}, \mathrm{u})$,
Which is a contradiction.
Hence, $A w=y$ implies $S w=y=A w$.
Since, S and A are weakly compatible, $\mathrm{ASw}=\mathrm{SAw}$ implies $\mathrm{Sy}=\mathrm{Ay}$.

Now, if $A y \neq y$ then by using (C) we get,
$d(A y, y, u)=d(A y, B y, u) \leq K_{1}[d(S y, T y, u) \diamond d(A y, S y, u)]+K_{2}[d(S y, T y, u) \vee d(B y, T y, u)]+$ $\mathrm{K}_{3}[\mathrm{~d}(\mathrm{Sy}, \mathrm{Ty}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ay}, \mathrm{By}, \mathrm{u})]+\mathrm{K}_{4}[\mathrm{~d}(\mathrm{Sy}, \mathrm{Ty}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ay}, \mathrm{Ty}, \mathrm{u})]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{Sy}, \mathrm{Ty}, \mathrm{u}) \diamond 122\{\mathrm{~d}(\mathrm{Ay}, \mathrm{By}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{Ty}, \mathrm{u})\}]$ $+\mathrm{K}_{6}[\mathrm{~d}($ Sy, Ty, $\left.u) \diamond 1 / 2 \mathrm{~d}(\mathrm{Ay}, \mathrm{Sy}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{Ty}, \mathrm{u})\}\right]$.

Using (8) and (10) we get, $d(A y, y, u) \leq K_{1}[d(A y, y, u) \diamond d(A y, A y, u)]+K_{2}[d(A y, y, u) \diamond d(y, y, u)]+$ $\mathrm{K}_{3}[\mathrm{~d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{4}[\mathrm{~d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})\}]+$ $\mathrm{K}_{6}[\mathrm{~d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ay}, \mathrm{Ay}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})\}]$.

Or, $\mathrm{d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u}) \leq \alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right) \mathrm{d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u})<\mathrm{d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u})$,
Which is a contradiction. So, $\mathrm{Ay}=\mathrm{y}$.
Using $A y=y=S y$ and from (8) we get, $A y=B y=S y=T y=y$.
i.e., y is a common fixed point for $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$.
we now show that y is a unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .
Let, x be another fixed point of A, B, S, T and $x \neq y$
Then $d(x, y, u)=d(A x, B y, u) \leq K_{1}[d(S x, T y, u) \diamond d(A x, S x, u)]+K_{2}[d(S x, T y, u) \diamond d(B y, T y, u)]+$
$K_{3}[d(S x, T y, u) \diamond d(A x, B y, u)]+K_{4}\left[d(S x, T y, u) \diamond d(A x, T y, u]+K_{5}[d(S x, T y, u) \diamond 122\{d(A x, B y, u)+d(B y, T y, u)\}]\right.$
$+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ax}, \mathrm{Sx}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{Ty}, \mathrm{u})\}]$
i.e., $d(x, y, u) \leq K_{1}[d(x, y, u) \diamond d(x, x, u)]+K_{2}[d(x, y, u) \diamond d(y, y, u)]+K_{3}[d(x, y, u) \diamond d(x, y, u)]+K_{4}[d(x, y, u) \diamond d(x, y, u]$
$+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{x}, \mathrm{x}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{y}, \mathrm{u})\}]$
i.e., $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \leq \alpha\left(\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}\right) \mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{u})<\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{u})$,

Which is a contradiction.
So, $\mathrm{x}=\mathrm{y}$.
Hence, A, B, S, T have a unique common fixed point.

We have the following corollaries:

Corollary 1: Let (X,d) be a 2-metric space such that \diamond satisfy α-property with $\alpha \geq 0$. Let A, B and S be self mappings of X into itself satisfy following conditions:
a. $A(X) S(X), B(X) S(X)$ and $S(X)$ is a closed sub sets of X.
b. The pair (A, S) and (B, S) are weakly compatible.

$$
\begin{aligned}
& \text { c. } \mathrm{d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u}) \leq \mathrm{K}_{1}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{Sx}, \mathrm{u})]+\mathrm{K}_{2}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{By}, \mathrm{Sy}, \mathrm{u})]+\mathrm{K}_{3}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u})] \\
&+\mathrm{K}_{4}\left[\mathrm{~d}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{Sy}, \mathrm{u}]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{Sy}, \mathrm{u})\}]+\right. \\
& \mathrm{K}_{6}[\mathrm{~d}(\mathrm{Sx}, \mathrm{Sy}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ax}, \mathrm{Sx}, \mathrm{u})+\mathrm{d}(\mathrm{~d} y, S y, u)\}]
\end{aligned}
$$

For all x , y in X , where $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6} \geq 0$ and $\sum_{i=1}^{6} K_{i}<1$. Then A, B and S have a unique common fixed point in X .

Proof: Put $\mathrm{S}=\mathrm{T}$ in the main theorem and get the result.
Corollary 2: Let (X, d) be a complete 2 -metric space such that \diamond satisfy α-property with $\alpha \geq 0$. Let A and B be self-mappings of X into itself satisfy following conditions:

$$
\begin{aligned}
& \mathrm{d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u}) \leq \mathrm{K}_{1}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{x}, \mathrm{u})]+\mathrm{K}_{2}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{By}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{3}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u})]+ \\
& \mathrm{K}_{4}\left[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{y}, \mathrm{u}]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ax}, \mathrm{By}, \mathrm{u})+\mathrm{d}(\mathrm{By}, \mathrm{y}, \mathrm{u})\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ax}, \mathrm{x}, \mathrm{u})+\right. \\
& \mathrm{d}(\mathrm{By}, \mathrm{y}, \mathrm{u})\}]
\end{aligned}
$$

for all x , y in X , where $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6} \geq 0$ and $\sum_{i=1}^{6} K_{i}<1$. Then A and B have a unique common fixed point in X.

Proof: Put S = I in corollary 1 and get the result.
Corollary 3: Let (X,d) be a complete 2 -metric space such that \diamond satisfy α-property with $\alpha \geq 0$. Let A be self mappings of X into itself satisfy following conditions:

$$
\begin{aligned}
& \mathrm{d}(\mathrm{Ax}, A y, u) \leq \mathrm{K}_{1}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{x}, \mathrm{u})]+\mathrm{K}_{2}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ay}, \mathrm{y}, \mathrm{u})]+\mathrm{K}_{3}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(\mathrm{Ax}, \mathrm{Ay}, \mathrm{u})]+ \\
& \mathrm{K}_{4}\left[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond \mathrm{d}(A x, y, u]+\mathrm{K}_{5}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(\mathrm{Ax}, A y, \mathrm{u})+\mathrm{d}(A y, y, u)\}]+\mathrm{K}_{6}[\mathrm{~d}(\mathrm{x}, \mathrm{y}, \mathrm{u}) \diamond 1 / 2\{\mathrm{~d}(A x, \mathrm{x}, \mathrm{u})+\right. \\
& \mathrm{d}(A y, \mathrm{y}, \mathrm{u})\}]
\end{aligned}
$$

for all x , y in X , where $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6} \geq 0$ and $\sum_{i=1}^{6} K_{i}<1$. Then, A have a unique common fixed point in X .

Proof: Put B = A in corollary 2 and get the result.

REFERENCES

1. De Sarkar, S. and Kalishankar Tiwary, 2009. Some Common Fixed Point Theorems For Contractive Type Compatible Mappings in 2-metric Spaces, Journal of Mathematics, II, 2: 181-194.
2. Gahler, S. 1963. 2-metrische Raume and Iher Topogosche Struktur, Math. Nache., 26: 1115-1148.
3. Gupta, V. et al., 2012. Some Fixed Point Theorems in 2-metric Spaces, Advances in Applied Science Research, 3(5): 2807-2814.
4. Jungck, G. 1986. Compatible Mappings and Common Fixed Points, Internat. J. Math. and Math. Sci., 9: 771-779.
5. Jungck, G. 1988. Common Fixed Points for Commuting and Compatible Mappings on Compacts, Proc. Amer. Math. Soc., 103: 977-985.
6. Jungck, G. and Rhodes, B.E. 1993. Fixed Point Theorems for Compatible Mappings, Internat. J. Matha and Math. Sci., 16(3): 417-428.
7. Naidu, S.V.R. and Rajendra Prasad, J. 1986. Fixed Point in 2-metric Spaces, Ind. J. Pure and Appl. Math., 17(8): 974-993.
8. Rhoades, B.E. 1979. Contraction Type Mapping On 2-metric Spaces, Math. Nacher, 91: 151-155.
9. Simoniya, N.S. 1993. An Approach to Fixed point Theorem in a 2-metric apace, The Math. Education, 27: 8-10.
